
 

 

 

 

MILWAUKEE SCHOOL OF ENGINEERING 

ELECTRICAL ENGINEERING AND COMPUTER SCIENCE DEPARTMENT 

CS-400 SENIOR DESIGN I 

 

 

 

 

SEGA® DREAMCASTTM AND MICROSOFT® WINDOWS® CE GAME 
DEVELOPMENT 

 
 
 
 
 
 
 
 
 
 

Technology Report 
Submitted to:  Prof. Barnekow 

Submitted by:  Hai Bui 
Adam Lindsay 

Brett Morien 
Nathan Schultz 

Date Submitted: January 14, 2000 
 
 
 
 
 
* Information provided in this document is referenced from Microsoft® MSDN October 1999 and Microsoft® Windows® CE Toolkit 2.0 for 
Sega®   DreamcastTM.  
* Sega and Dreamcast are registered trademarks or trademarks of Sega Enterprises. 
* Microsoft, MS, Visual Studio, Visual C++, MSDN, Windows CE, Windows, Windows NT, DirectX, Win32, and Win32s are registered 
trademarks or trademarks of Microsoft Corporation. 



TABLE OF CONTENTS 

 

SEGA DREAMCAST..................................................................................................................................................4 

THE LIGHT GUN.......................................................................................................................................................7 

COM ...........................................................................................................................................................................12 

DIRECTX...................................................................................................................................................................13 
OVERVIEW ...............................................................................................................................................................13 
DIRECTDRAW...........................................................................................................................................................13 
DIRECTSOUND..........................................................................................................................................................13 
DIRECT3D ................................................................................................................................................................13 
DIRECTINPUT ...........................................................................................................................................................14 
DIRECTPLAY ............................................................................................................................................................14 

WINDOWS CE..........................................................................................................................................................15 
OVERVIEW ...............................................................................................................................................................15 

WINDOWS CE ARCHITECTURE.........................................................................................................................15 
OVERVIEW ...............................................................................................................................................................15 
KERNEL....................................................................................................................................................................15 
OBJECT STORE .........................................................................................................................................................16 
GWES......................................................................................................................................................................16 
COMMUNICATIONS ...................................................................................................................................................16 
OPTIONAL COMPONENTS..........................................................................................................................................16 

WHY WINDOWS CE FOR DREAMCAST ...........................................................................................................18 

PORTING ISSUES IN WINDOWS CE FOR DREAMCAST ..............................................................................19 

WINDOWS CE FOR DREAMCAST ARCHITECTURE.....................................................................................20 
KERNEL....................................................................................................................................................................20 
PROCESSES AND THREADS .......................................................................................................................................20 
INTERRUPT HANDLING .............................................................................................................................................20 
MEMORY ARCHITECTURE ........................................................................................................................................20 
OBJECT STORE .........................................................................................................................................................21 
PERSISTENT STORAGE AND PHYSICAL MEMORY USAGE ..........................................................................................21 
COMMUNICATIONS INTERFACE ................................................................................................................................21 
SERIAL COMMUNICATIONS.......................................................................................................................................21 
NETWORK COMMUNICATIONS..................................................................................................................................21 
GRAPHICS DEVICE INTERFACE .................................................................................................................................21 
MIDI INTERFACE .....................................................................................................................................................22 
TIMING INTERFACES.................................................................................................................................................22 
C RUN-TIME LIBRARY .............................................................................................................................................22 

WINDOWS CE FOR DREAMCAST CORE SYSTEM ........................................................................................22 
PROCESSES AND THREADS .......................................................................................................................................22 
CREATING A THREAD LOCAL STORAGE ...................................................................................................................23 
CREATING A PROCESS ..............................................................................................................................................24 
TERMINATING A PROCESS ........................................................................................................................................25 
CREATING A THREAD ...............................................................................................................................................26 
TERMINATING A THREAD .........................................................................................................................................26 



 3 

THREAD SCHEDULING ..............................................................................................................................................26 
PROCESSES AND THREADS SYNCHRONIZATION........................................................................................................28 
WAIT FUNCTIONS.....................................................................................................................................................28 
CRITICAL SECTION SYNCHRONIZATION OBJECTS.....................................................................................................29 
EVENT SYNCHRONIZATION OBJECTS........................................................................................................................30 
MUTEX SYNCHRONIZATION OBJECTS.......................................................................................................................32 
USING THREAD OBJECTS..........................................................................................................................................34 
MANAGING MEMORY...............................................................................................................................................34 
VIRTUAL MEMORY...................................................................................................................................................35 
VIRTUAL MEMORY ISSUES .......................................................................................................................................37 
MEMORY-MAPPED FILE ...........................................................................................................................................37 
HANDLING SYSTEM OBJECTS ...................................................................................................................................38 
OBJECT MANAGER ...................................................................................................................................................38 
OBJECT HANDLE LIMITATIONS.................................................................................................................................39 
MANAGING USER OBJECTS ......................................................................................................................................39 
MANAGING GDI OBJECTS........................................................................................................................................40 
MANAGING KERNEL OBJECTS ..................................................................................................................................41 
TIMERS.....................................................................................................................................................................43 
FILE SYSTEMS AND FILES .........................................................................................................................................46 



SEGA DREAMCAST 
The Dreamcast was Sega’s answer to Sony’s Playstation and Nintendo’s N64 system.  Sega had a 

failing run in the area of cartridge-based home game consoles.  Sega decided that what they needed was 
a system that not only could perform the same as the Playstation and the N64, but also to keep the 
system a valuable console in the future.  Sega’s Dreamcast has the opportunity to do as its designers 
wanted.  The Dreamcast has combined several elements to ensure that it will remain a force in the home 
console area.  These elements will be discussed; their advantages and disadvantages will also be 
explored. 

One of Sega’s biggest down falls in the earlier cartridge era was that in order to develop for the 
Sega console one would have to learn a new language and technology.  Sega has side stepped this issue 
in the Dreamcast by using tools that are currently being taught and used by many people in the 
programming field.  Sega has the Dreamcast using the Windows CE operating system for development.  
The Dreamcast still requires a special SDK, but the SDK does not require a person to learn a 
programming language that they are unfamiliar with.  The SDK’s main purpose is to setup Windows CE to 
handle the programming for the Dreamcast and its components.  Another advantage that Sega gained 
from using the Windows CE toolkit is that the Dreamcast can now use DirectX.  DirectX is used all over 
the programming industry and with Sega using the Windows CE toolkit and DirectX a programmer does 
not have to worry about the interface between the hardware and the software. 

The size of the required Windows CE platform is also an added benefit to the Sega Corporation.  
Below in Figure 1 one can see how the programs are layer for their use. 

 

Figure 1: Dreamcast code layers and sizes 

One can see from the above figure (Figure 1) that the main operating system of the Dreamcast is 
only a small percentage of the disk space.  If one does not count the game code the operating system 
takes less than 5 MB of room on a gigabyte CD. 



 5 

Developers for the Sega Dreamcast also see some benefits from Sega’s use of the Windows CE 
system.  Since, the programming for Windows CE for the Dreamcast is similar to what one might use in 
programming for Windows 9x.  One can easily port games from the Windows CE standard to the 
Windows 9x standard.  This is shown by a Figure taken from the Microsoft web page on developing for 
the Sega Dreamcast (Figure 2). 

 

Figure 2: The portability of the program from the Dreamcast to the PC 

Sega also has an advantage using its GigaROM CD.  The GigaROM was originally developed to 
help keep its software from being pirated by users and to stop CD switching associated with PC and 
Playstation games.  This choice made for more advantages than initially thought.  With the GigaROM CD 
Sega was able to place the entire Windows CE platform on the CD rather than into the console.  The fact 
that the entire console platform could be placed onto the CD added yet another advantage as now the 
Sega Dreamcast would no longer have to worry about version conflicts.  Windows CE can be continually 
updated or upgraded as well as DirectX; this will no longer be a problem since the platform is contained 
on the GigaROM CD.  The console downloads the platform from the CD thus the Dreamcast does not 
know, nor care what version of Windows CE or DirectX is running as long as it can be downloaded into its 
memory.  The layers of the GigaROM CD can be seen below in Figure 3 as well as how they interact with 
the Dreamcast. 

 

Figure 3: The interactive of the GigaROM CD and the Dreamcast Console 

One may better understand the flexibility of the Dreamcast if they knew what was contained in 
the Dreamcast.  The Dreamcast console includes a 200MHz Hitachi Sb microprocessor and VideoLogic 
PowerVR graphics chip capable of rendering more than 1 million polygons per second1. The sound chip is 
the Yamaha AICA, which uses the ARM7DI as its sound controller1.   These microprocessors main 
function is to handle graphics, sound and system resources of the Dreamcast and its GigaROM CD.  In 



 6 

the aspect of memory the Dreamcast has planned for the future as its present games don’t require the 
full value of the memory provided.  The system has 16MB of main memory, 8MB of video memory, and 
2MB of sound memory1. 

The Dreamcast also carries a benefit from the earlier mentioned Gigabyte Rom or GD-ROM.  
Unlike other consoles that either use cartridges (like the Nintendo 64) or standard CD-ROMs (like the 
Sony PlayStation), Sega designed the proprietary storage format for the Dreamcast called GD-ROM 
(Gigabyte Disk ROM). These discs can store both standard CD-ROM data and game data in a high-density 
band. The GD-ROM format allows Dreamcast titles to store more data than standard CD-ROMs without 
having to employ the much more expensive DVD drives.1 

One critical point that should be mentioned is that, in events that are time critical, the Sega 
Dreamcast does have some flaws.  The Windows CE platform covers important issues for the Dreamcast 
programmer such as the ones listed below: 

• Virtual memory management, which all but eliminates memory fragmentation2 
• Memory protection, which prevents games from crashing the operating system2 
• CD file management, including asynchronous file loading and file enumeration using wildcard2  
• Dynamic link libraries, which allow both code and data to be loaded, linked and unloaded at run 

time and under program control2 
• Multithreaded event synchronization, which allows threads to lie dormant, consuming no CPU 

time, until an event occurs. Events can be signaled by other threads or by the operating system.2 

However, some of the overhead associated with the Windows CE platform does not allow real 
time events to occur.  To solve this problem many programmers will program the section of time critical 
code in the assembly language for the Hitachi Sb microprocessor.  The assembly code runs faster and 
can be added inline using the Dreamcast SDK, solving the normal overhead time problem that can be 
associated with the Windows CE operating platform.  Programmers have also in cases chosen the route 
of either rewriting part or all of the DirectX components in order to increase the efficiency of the game 
code. 

To develop for the Dreamcast it not only requires Windows CE and the Dreamcast SDK as 
explained above, but also a development box referred to as a set5.  The set5 development box is 
basically a Sega Dreamcast with a SCSI adapter attached.  The set5 contains all the components as 
described above as well as SCSI adapter and other added ports to help the developer debug their 
program.  In Figure 4, one can see what the development box looks like a mid-tower computer with 
added components. 

If one could look at the front of the set5 one could see that the development box also includes 4 
game ports for Dreamcast controllers and the Sega Dreamcast CD ROM bay.  The set5 is a full emulator 
or debugging tool for the Dreamcast.  This tool replicates every aspect of the Dreamcast.   

More information on the Dreamcast can be found on the following website: 

http://marcus.mangakai.org/dc/ 
 

                                                
1 http://msdn.microsoft.com/library/periodic/period99/msft/msj/0799/directx/directx.htm 
2 http://msdn.microsoft.com/cetools/platform/backgrnd.asp 



 7 

 

Figure 4: The Back of the Set5 Development Box 

Currently, this development tool is the only device that the Windows CE Group is missing to 
complete its project as expected.  If the Windows CE Group fails to obtain this device then a contingency 
plan will be used. 

THE LIGHT GUN 
Ever since the release of DuckHunt for the original Nintendo system, the light gun has been a 

significant part of consol gaming. 

To understand the light gun, one must first understand input devices in general.  The Dreamcast 
supports several types of devices, including:  

• Light guns  
• Game controllers  
• Keyboards  
• Visual Memory units  
• Vibration devices  
• Microphones  

An input device is a device that receives user input, such as a joystick, gamepad, or light gun. 
These types of devices are handled through the DirectInput interface API. A non-input device is a device 
that does not receive user input, such as a Visual Memory timer, liquid crystal display (LCD), or external 
flash storage. These types of devices are handled through the Maple bus interface API.  

Light gun, are viewed by the system as two distinct devices. For example, the input device 
connects through the DirectInput interface, which handles input from the trigger and buttons, and the 
non-input device connects through the ILGun interface, which handles the positioning of the gun on the 
screen. 



 8 

Special APIs were developed for each non-input device type. For example, a vibration device 
connects to Dreamcast through the IVib device interface, while a light gun connects through the ILGun 
device interface. Each device interface is accessed through the Maple functions. The following list 
explains the general process for accessing a non*input device interface through the Maple APIs:  

• The MapleEnumerateDevices function enumerates the devices that are connected to the 
Maple bus.  

• Using the provided MapleEnumDeviceCallback callback function, MapleEnumerateDevices 
provides a pointer to a MAPLEDEVICEINSTANCE structure. One structure exists for each 
enumerated device.  

• Each MAPLEDEVICEINSTANCE structure contains information about an enumerated device, 
such as the device type and a GUID. You pass the GUID to MapleCreateDevice.  

• The MapleCreateDevice function instantiates an interface to the device and returns a 
ppIUnknown pointer.  

• You pass ppIUnknown to QueryInterface, which then returns a pointer to the appropriate 
device interface, such as IVib and ILGun.  

• You use the pointer provided by QueryInterface to access the functions of the device 
interface. For example, if an IVib interface is returned, you can begin accessing 
IVib::GetVibArbitraryWaveform and IVib::GetVibInfo.  

The Sega Dreamcast currently has two light guns available for it: 

 

The first light gun available for the Sega 
Dreamcast, pictured to the right, gives the 
user a controller imbedded in the light gun.  
This design features rapid fire, dual trigger, 
and auto-reload. 

 
 
 
 
Figure 4A: Sega Dreamcast Light Gun 1 !!!! 

The second light gun, pictured to the right, 
provides a sleeker style.  It also has an 
auto-reload feature.  A better design gives 
this gun better accuracy. 
 
 
 
 
 
 
 
 
Figure 4B: Sega Dreamcast Light Gun 2  !!!! 
 



 9 

Despite the differences in the above light guns, the system views them in the same way.  To the 
system, the light gun is comprised of two separate devices: one input and one non-input.  The input 
device is considered a joystick with a trigger and six buttons. You connect to it through the DirectInput 
APIs. The non-input device displays the light beam on the screen. You connect to it through the special 
ILGun device interface, which is accessed through the Maple APIs. The ILGun interface can be called at 
any time, but the recommended approach is to call it when the trigger is pressed.  To identify the light 
beam’s screen location, the gun’s sensor must be calibrated by using ILGun::Calibrate. 

 Functional Coding Samples: 

CLightgun.cpp.  This file details the function definitions required to initialize the light gun input 
device: 

/******************************************************************* 
Copyright (c) 1999 Microsoft Corporation 
 
Module Name: 
CLightgun.cpp 
 
Abstract: 
Member functions for the CLightgun class. 
********************************************************************/ 
// **** Include Files *********************************************** 
#include "Lightgun.hpp" 
/******************************************************************** 
Function: 
CLightgun::CLightgun 
 
Description: 
Constructor for CLightgun Class. 
 
Arguments: 
GUID        guidLightgun - GUID of the Lightgun device 
CController *pcont - Controller to which the Lightgun device is 
attached 
 
Return Value: 
None 
********************************************************************/ 
CLightgun::CLightgun(GUID guidLightgun) 
{ 
m_guidLightgun = guidLightgun; 
m_plgunintf    = NULL; 
} 
/******************************************************************** 
Function: 
CLightgun::~CLightgun 
 
Description: 
Destructor for CLightgun class. 
 
Arguments: 
None 
 
Return Value: 
None 
********************************************************************/ 



 10 

CLightgun::~CLightgun() 
{ 
} 
 
/******************************************************************** 
Function: 
CLightgun::Initialize 
 
Description: 
Initializes the CLightgun object. 
 
Arguments: 
None 
 
Return Value: 
TRUE on success, FALSE on failure. 
********************************************************************/ 
BOOL CLightgun::Initialize() 
{ 
IUnknown *pIUnknown; 
 
g_errLast = MapleCreateDevice(&m_guidLightgun, &pIUnknown); 
if (CheckError(TEXT("Create Maple Device"))) 
return FALSE; 
 
pIUnknown*>QueryInterface(IID_ILGun, (PVOID*)&m_plgunintf); 
pIUnknown*>Release(); 
 
if (m_plgunintf == NULL) 
return FALSE; 
 
// Note, this event must be manually reset. 
m_hEvent = CreateEvent(NULL, TRUE, TRUE, NULL); 
 
return TRUE; 
} 
 



 11 

CLightgun.hpp.  This file details the class definitions and function declarations for the light gun input 
device implementation: 

 
/******************************************************************** 
Copyright (c) 1999 Microsoft Corporation 
Module Name: 
    CLightgun.hpp 
 
Abstract: 
   CLightgun class declaration 
********************************************************************/ 
// **** Global Variables ******************************************** 
enum ELightgunCommands 
{ 
    ecmdReadLoc, 
}; 
 
// **** Classes ***************************************************** 
class CController; 
 
class CLightgun 
{ 
public: 
    CLightgun(GUID LightgunGuid); 
    ~CLightgun(); 
 
    // Initialize the Lightgun object 
    BOOL Initialize(void); 
 
    HANDLE m_hEvent; 
 
    // LGun interface 
    PLGUN m_plgunintf; 
 
    // Last position the gun was fired at 
    LGUN_POSITION m_lgunpos; 
 
private: 
    // The GUID of the Lightgun device 
    GUID m_guidLightgun; 
};     
 



 12 

COM 
Along the evolution of the Windows operating system, Microsoft decided that there needed to be 

better methods of inter-process communication.  They ‘borrowed’ the concept of OLE (Object Linking and 
Embedding) from the Wang Corporation and incorporated it into Windows 3.11.  It was based on the 
vision of embedding objects from one application into the workings of another application.  This allowed 
a person to, for example, insert a bitmap and an Excel chart into a Word application and make changes 
without having to go back to the original program.  The idea of OLE was expanded into a larger system 
of shared components and evolved into COM. 

COM stands for Component Object Model.  What this means is that an application can be built 
out of smaller components that, as a side benefit, are completely reusable by any application.  This is 
accomplished by building components with interfaces.  The interfaces are really not much more than a 
structure of function pointers.  When a component is created, it implements an interface by linking these 
pointers to functions within itself.  What this means, then, is that any application written around this 
interface can be used in the same way.  The permutations become endless at that point. 

An interface is much like a system contract.  There are certain things that are promised by the 
interface, and there are things that are expected by applications using it.  In order for a system like this 
to be feasible, interfaces must never change once they have been published.  If this were allowed, then 
entire applications would be rendered useless upon change.  Even if the change were so simple as to add 
another method, the interface structure would be changed and it would be impossible to implement 
without code change.  If code needed to be changed that often, we would call it Linux. 

One final key feature to COM architecture under a Windows environment is the extension called 
DCOM (Distributed Component Object Model).  This allows COM objects to be instantiated on a separate 
computer connected to the same network.  This has advantages in the areas of distributed computing, 
some publish subscribe architectures, etc. 



 13 

DIRECTX 
OVERVIEW 

The version of DirectX that will be used in this project is 6.1.  This includes up-to-date versions of 
DirectDraw, DirectSound, Direct3D, DirectInput, DirectPlay, and DirectMusic.  The specialized version of 
DirectX for Dreamcast does not include support for DirectMusic and support for the other components is 
limited. 

The first thing that happens after creating a DirectX object is finding the devices that are on the 
system and exploring their capabilities.  This is accomplished in a two-step process.  First, an 
enumerating function is used that calls a callback function for each device found.  After the devices are 
enumerated, a device is chosen by the application or by the user.  A function is called (GetCaps) that 
retrieves a capability structure with information about the device.  This procedure applies to all of the 
DirectX objects. 

DirectX is based off of COM technology.  DirectX is composed of the following components: 
DirectDraw, DirectSound, Direct3D, DirectMusic, DirectPlay, DirectShow and DirectInput.  Each of these 
components are implemented using a series of interfaces and have their own subparts. 

DIRECTDRAW 

The DirectDraw system’s primary canvas is a surface.  Surfaces are created, and bitmapped data 
is “blitted” to the surface.  These surfaces can be swapped and moved between video memory and 
system memory and represent different on and off screen regions.  DirectDraw allows the user quick 
access to the video hardware without having to go through the Windows’ GDI system.  This allows for 
tremendous increases in speed since the Windows GDI was not designed for high speed applications.  
The other advantage of DirectDraw is the abstract approach to the display that it takes.  It doesn’t 
require the user to be knowledgeable of the specific way a hardware manufacturer implements its card or 
even what card is at the other end. 

DIRECTSOUND 

The primary purpose of DirectSound is to provide low-latency access to the audio hardware and 
allow easy mixing of sounds.  In the old days, the user had to select their sound driver from a menu 
before the game could start.  DirectSound allows for the programmer to write for the DirectX interface 
instead of attempting to include every known device driver. 

The DirectSound system uses sound buffers for most of its work.  A sound buffer is either a 
segment of memory holding a sound clip or a circular buffer with streaming data in it.  DirectSound allow 
direct access to the audio hardware without having to deal with the latency of using the Windows 
multimedia system.  DirectSound allows for mixing of multiple audio tracks and for hardware mixing on 
some sound devices.  Finally, DirectSound comes with built in three-dimensional sound support that is 
rather easy to work with. 

DIRECT3D 

Direct3D is a much more sophisticated beast.  This area has been the focus of a large portion of 
the development effort at Microsoft, and it will be the primary focus in this project.  Direct3D is an 
extension of the DirectDraw system.  It allows support for hardware and software rendering of 3D 
graphics.  There is a common set of capabilities included (such as fog, alpha blending, translations) that 
are passed to the graphics hardware if the capabilities exist; otherwise, they are emulated using 
software.  Since these decisions are made internally, the programmer has no concern about what video 
cards are installed on the target machine. 



 14 

Direct3D comes in two flavors: immediate mode and retained mode.  Retained mode is a high 
level abstraction of the 3D API designed for rapid development with a sacrifice made to run-time 
performance.  Immediate mode is designed for lower level access to video hardware, yet remaining 
device-independent in code.  This is ideal for developers porting existing games or those who demand 
higher performance, even if it takes a bit longer to develop. 

Direct3D provides support for translation and rotation effects, lighting, shading, clipping, 
texturing, depth buffering, and transparency effects.  Direct3D also has the ability to remain device 
independent.  Since some hardware supports features that others don’t, a robust software emulation 
layer exists that will fill in the blanks. 

Since the group is on a limited time scale and the capabilities of the Dreamcast are so great, 
retained mode will most likely be the method of choice.  Retained mode works by the usage of faces.  A 
face represents a single polygon and hold information about texture, material, surface normal, color and 
topology.  These faces are fed into the Direct3D system, and they are brought to the display. 

Direct3D retained mode also includes support for light, mesh, viewport, and texture structures for 
higher extractions from the hardware.  These structures can be manipulated in a high level way to 
created the desired effects. 

DIRECTINPUT 

The concept of DirectInput is that it allows many devices to be attached to a game and be 
treated roughly the same way.  In the old days, the user of a game would have to inform the game of 
the hardware attached to the game, such as a joystick, and calibrate it before the game can start.  
DirectInput allows the game to detect attached devices and extract common calibrations from the 
operating system.  As a side note, DirectInput has native support for forced feedback devices. 

DirectInput allows for an abstraction of the attached devices for simplicity.  For instance, a 
mouse device can be treated the same as a light gun device.  This sort of architecture allows game 
programmers to avoid doubling up on unnecessary work.  For example, with a light gun, an event is fired 
that announces that the trigger has been pressed.  The application then can poll for the position of the 
gun on the screen and get screen coordinates back without having to deal with counting scan lines and 
timing.   

DIRECTPLAY 

DirectPlay allows the user to have a common interface for gameplay between separate consoles 
or computers.  The DirectPlay interface masks the specifics of the type of network in order to make 
connecting computers seamless.  This allows the programmer to develop the game to be multiplayer 
without specifying how the connection is to be made and building it into code manually. 

DirectPlay is centered about the concept of a lobby where players converse before a game, and 
an administrator can set rules for the upcoming game.  After that, DirectPlay takes care of keeping the 
gamestate synchronized between stations. 

Dreamcast supports DirectPlay4 and uses it to connect the Dreamcast to the Internet.  The user 
has the ability to buy a modem that connects the Dreamcast to the Internet through the phone lines.  
This is the primary means of communication for DirectPlay at this time.  This group has no plans to 
incorporate DirectPlay into the game. 



 15 

WINDOWS CE  
OVERVIEW 

Microsoft Windows CE is a compact, scalable operating system (OS) that is designed for a variety 
of embedded systems and products. Designed and written from scratch for hardware with limited 
resources, Windows CE supports a multithreaded, multitasking, fully preemptive OS environment. Its 
modular design enables embedded systems developers and application developers to customize it for a 
variety of products, such as consumer electronic devices, specialized industrial controllers, and embedded 
communications devices. 

Windows CE supports various hardware peripherals, devices, and networking systems. These 
include keyboards, mouse devices, touch panels, serial ports, Ethernet connections, modems, universal 
serial bus(USB) devices, audio devices, parallel ports, printer devices, and storage devices, such as PC 
Cards.  Windows CE supports the following technologies:  

• Real-time processing for managing time-critical responses  
• a variety of serial and network communication technologies, including USB support  
• Mobile Channels, which provides Web services for Windows CE users  
• Automation and other methods of interprocess communication  

Additionally, Windows CE supports more than 1,000 common Microsoft Win32 APIs and several 
additional programming interfaces that one can use to develop applications. These interfaces include:  

• Component Object Model (COM)  
• Microsoft Foundation Classes (MFC)  
• Microsoft ActiveX controls  
• Microsoft Active Template Library (ATL)  

It is important to note that only the common APIs and programming interfaces are implemented 
for Windows CE.  The developer has to verify whether a Win32 API is supported by Windows CE or not.  
In addition, Windows CE only supports one-level deep directory structure.  It does not  support security, 
current directory, nor handle inheritance.  Therefore, the majority of Microsoft Win32 APIs parameters 
must be set to NULL or 0 when utilized for Windows CE developments. 

WINDOWS CE ARCHITECTURE 
OVERVIEW 

Windows CE is built from a number of discrete modules, each providing specific functionality. 
Several of these modules are divided into components. Components enable Windows CE to become very 
compact (less than 200 KB of ROM), using only the minimum ROM, RAM, and other hardware resources 
that are required to run a device. 

The Windows CE OS contains four modules that provide the most critical features of the 
operating system: the kernel; the object store; the Graphics, Windowing, and Events Subsystem (GWES); 
and communications. Windows CE also contains additional, optional modules that support such tasks as 
managing installable device drivers and supporting COM. 

KERNEL 

The kernel is the core of the OS, and is represented by the Coredll module. It provides the base 
operating system functionality that must be present on all devices. The kernel is responsible for memory 
management, process management, and certain required file management functions. It manages virtual 
memory, scheduling, multitasking, multithreading, and exception handling. 



 16 

Most components of the Coredll module are required for any configuration of Windows CE. There 
are some optional kernel components, however, that are needed only when one includes such operating 
system features as telephony, multimedia, and graphics device interface (GDI) graphics.  

OBJECT STORE 

The Filesys module supports the Windows CE object store API functions. The following table 
shows the types of persistent storage that the object store supports.  

Type of storage Description 

File system Contains application and data files 

System registry Stores the system configuration and any other information that an 
application must access quickly 

Windows CE database Provides structured storage 

The object store offers an alternative to storing user data and application data in files or in the 
registry. These various object store components can be selected or omitted during the operating system 
build process to include only those features that are required.  

GWES 

GWES is the graphical user interface between a user, the application, and the OS. GWES handles 
user input by translating keystrokes, stylus movements, and control selections into messages that convey 
information to applications and the OS. GWES handles output to the user by creating and managing the 
windows, graphics, and text that are displayed on display devices and printers. 

Central to GWES is the window. All applications need windows in order to receive messages from 
the OS, even those applications created for devices that lack graphical displays. GWES provides controls, 
menus, dialog boxes, and resources for devices that require a graphical display. It also provides the GDI, 
which controls the display of text and graphics.  

COMMUNICATIONS 

The communications component provides support for the following communications hardware 
and data protocols:  

• Serial I/O support  
• Remote Access Service (RAS)  
• Transmission Control Protocol/Internet Protocol (TCP/IP)  
• Local Area Network (LAN)  
• Telephony API (TAPI)  
• Wireless Services for Windows CE  

OPTIONAL COMPONENTS 

In addition to the primary modules just described, other operating system modules are available. 
These include modules and components in the following categories:  

• Device manager and installable device drivers  
• Multimedia (sound) support module  
• COM support module  
• Windows CE Shell module  



 17 

Each module or component provided in Windows CE supports a group of related API functions 
that are available to the developer. 

WINDOWS CE FOR DREAMCAST 

Windows CE for Dreamcast is an operating system designed to support high-performance, 
platform-independent game development with built-in Internet support on Sega’s Dreamcast game 
console. Windows CE for Dreamcast consists of customized and optimized derivatives of Windows CE and 
DirectX, offering compatibility with the Win32 and DirectX APIs currently supported under Windows 9x.  

Because Dreamcast is compatible with desktop versions of Windows and DirectX, games written 
for Windows CE can be ported to and from desktop versions of Windows. This compatibility enables 
cross-platform development, eliminating the need to understand every detail of the underlying hardware. 
Windows CE also provides high performance, a comprehensive set of APIs, Internet connectivity, and the 
Visual Studio integrated development environment (IDE). 

Windows CE for Dreamcast is based on Windows CE, which was designed and written from 
scratch to provide high performance on inexpensive hardware. Windows CE for Dreamcast supports a 
subset of the Win32 API, but Windows CE for Dreamcast and Windows 9x share no code. 

Windows CE for Dreamcast is smaller, faster, and cleaner than Windows 9x in many ways and for 
many reasons, including the following: 

• Windows 9x contains a substantial amount of 16-bit code in order to maintain compatibility with 
older software. Windows CE for Dreamcast is 32-bit only and contains no legacy code, having 
been written from scratch. 

• The Graphical Device Interface (GDI) supported by Windows 9x is largely absent from Windows 
CE for Dreamcast. All screen output is performed using DirectDraw surfaces.  

• All Windows CE for Dreamcast games run in full-screen exclusive mode, as do most Windows 9x 
games. This requirement allows numerous Windows functions to be discarded, including multiple 
overlapping windows, window frames, and focus management. 

• Windows CE for Dreamcast does not support a standard library of user interface objects, such as 
buttons, menus, scroll bars, and list boxes. 

• There is no Windows desktop, no mouse driver, and no mouse cursor. 

• With the exception of a small amount of optional backup RAM, Windows CE for Dreamcast does 
not support write-able storage media or printers. 

• Windows CE for Dreamcast supports a single virtual address space, which is shared by all 
processes. This streamlines interprocess communications. Games are prevented from corrupting 
one another by using page protections. 



 18 

WHY WINDOWS CE FOR DREAMCAST 
Windows CE for Dreamcast is designed to achieve hardware independence for game 

development.  a Windows CE for Dreamcast game can be ported to any platform that supports the Win32 
and DirectX APIs, including platforms that did not yet exist when the game was written. The resulting 
reduction in cross-platform development costs, together with the productivity gains associated with using 
an operating system to provide basic services, are key benefits of developing games for Windows CE for 
Dreamcast.  Because Windows CE for Dreamcast is Windows-compatible, game programmers will be able 
to move freely between consoles and PCs for the first time. 

A software-based platform, Windows CE offers hardware independence. A Windows CE game can 
be ported to desktop versions of Windows that support the DirectX APIs. By using familiar APIs and 
development tools, experienced Windows game developers can develop games for Windows CE almost 
immediately.  The inclusion of DirectX in Windows CE gives the developer a wide range of features, from 
animation and 3-D sound to a wide choice of input devices and Internet communications. 

Even if a developer chooses to substitute custom components for all or part of DirectX, he or she 
can still benefit from the following services offered by the Windows CE kernel and file system:  

• Virtual memory management, which all but eliminates memory fragmentation.  

• Memory protection, which prevents games from crashing the operating system.  

• File management, including asynchronous file loading and file enumeration using wildcards.  

• Dynamic-link libraries (DLLs), which allow both the code and the data to be loaded, linked, and 
unloaded at run time under program control.  

• Multithreaded event synchronization, which allows threads to lie dormant, consumes no CPU 
time, until an event occurs. Events can be signaled by other threads or by the operating system.  

As Windows CE for Dreamcast is a streamlined version of Windows CE, it provides the 
performance and small memory demands necessary for game console hardware. It also supports 
extensive development tools and a comprehensive set of APIs, including the full-featured Visual Studio 
integrated development environment, as well as a version of DirectX that is optimized for Dreamcast. 



 19 

PORTING ISSUES IN WINDOWS CE FOR DREAMCAST 
The streamlined design of Windows CE for Dreamcast presents the following issues when porting 

a game from Windows 9x to Dreamcast:  

• Windows CE for Dreamcast implements only a subset of the Windows CE and DirectX APIs. For 
example, the DirectInput game pad support is reduced because the properties of the Dreamcast 
game pad are known.  

• Dreamcast has less RAM than most personal computers.  

• Dreamcast has no hard disk and insufficient backup RAM for storing complex saved games.  

• Windows CE for Dreamcast does not support mouse input or cursor objects. The standard 
Dreamcast input device is the game pad, and any cursors must be supplied by the game.  

• Windows CE for Dreamcast does not support standard Windows user interface objects, such as 
dialog boxes.  

• Dreamcast requires 3-D textures to be square, and their sizes must be powers of 2.  

• Windows 95 supports ASCII text strings, while Windows CE supports both Unicode and ASCII.  

• Windows CE does not support the Data Access Object API, which some games use to maintain 
databases containing statistics or other information.  

• Dreamcast does not use an Intel processor. Any x86 assembly code must be rewritten. 

When porting a game from Windows CE for Dreamcast to Windows 9x, there following issues 
also have to be considered: 

• Personal computers may or may not have 3-D graphics hardware.  

• Personal computers do not have Q-Sound hardware, which significantly increases the CPU 
resources required to support 3-D sound.  

• Game pads are not standard equipment on personal computers. Keyboard input can be added as 
an option.  

• One must convert code that uses Dreamcast flash storage to use the standard Windows file 
system.  

• Any SH4 assembly code must be rewritten for an Intel processor.  

• Many current personal computers are running on ASCII code, and have not yet supported 
Unicode programs. 

According to such issues and limitations, porting a game from Windows CE for Dreamcast to 
Windows 9x is more achievable.  There are 3-D graphics and 3-D sound hardware available for the 
personal computer upgrade, the keyboard can be used to substitute the game pad, the Windows file 
system and ASCII code can still be utilized by functions that perform conversion available in Windows CE 
Platform Development kit. 



 20 

WINDOWS CE FOR DREAMCAST ARCHITECTURE 
Windows CE includes discrete modules, and each one provides specific functionality. Several of 

these modules are divided into components, which enables Windows CE to become very compact. As a 
result, a minimum amount of ROM, RAM, and other hardware resources are required to run a device. 

The Dreamcast OS includes the following modules:  

• Windows CE for Dreamcast Kernel  
• Object Store  
• Persistent Storage and Physical Memory Usage  
• Communications Interface  
• Graphics Device Interface  
• MIDI Interface  
• Timing Interfaces  
• C Run-Time Library  

KERNEL 

The Windows CE kernel is the core OS of the Dreamcast. It includes support for memory 
management, process management, exception handling, multitasking, and multithreading. All Dreamcast 
games run in a fully preemptive, multitasking environment in protected memory spaces. Windows CE 
supports Unicode and TrueType fonts, which allow applications to be internationalized. 

The Windows CE kernel uses dynamic-link libraries (DLLs) to optimize the use of available memory. 

PROCESSES AND THREADS 

Windows CE supports up to 32 simultaneous processes. Each process is a single instance of an 
application and can create multiple threads of execution. The total number of threads is limited only by 
available physical memory. Threads can be synchronized within a process and between multiple 
processes (interprocess synchronization). 

INTERRUPT HANDLING 

To provide efficient processing of interrupts, Windows CE splits interrupt handling into two parts: 
an interrupt service routine (ISR) and an interrupt service thread (IST). The ISR launches the IST that is 
responsible for handling the event. Then, the ISR returns, and the system responds to the next interrupt.  
The division of interrupt handling allows the ISR to be very small and very fast, features that minimize 
interrupt latencies and speed up interrupt processing. 

MEMORY ARCHITECTURE 

Windows CE optimizes memory management for game development by using virtual memory and 
memory-mapped files. 

The Hitachi SH-4 CPU for the Dreamcast system uses 32-bit memory addressing, allowing the 
SH-4 to address up to 4 GB of virtual memory. The kernel divides the memory into the following three 
sections:  

• The kernel reserves a 2 GB address space.  
• a 1 GB address space is subdivided into thirty-two 32 MB slots, one for each process. (a 

maximum of 32 processes can run concurrently.)  
• The final 1 GB address space is shared among all processes and is used for large data blocks, 

such as memory-mapped files.  



 21 

OBJECT STORE 

The object store offers an alternative to storing user data and application data in files or in the 
registry. These various object store components can be selected or omitted during the operating system 
build process to include only required features. 

PERSISTENT STORAGE AND PHYSICAL MEMORY USAGE 

Since a Dreamcast game unit does not have a hard disk, physical memory plays a different role 
on a Dreamcast system than it does on a desktop computer.  To maximize predictable timing, an entire 
game, its DLLs, and the operating system are loaded into RAM from the GD-ROM when the user starts 
the game. Only the boot ROM is stored in ROM. 

The system registry is not persistent. Applications running on Windows CE can access and modify 
information in the registry with standard functions. To permanently store changes to the registry, its 
contents must be saved to an external flash memory device. Flash is an optional device that preserves 
data if power is lost. It plugs into the Dreamcast game unit. 

COMMUNICATIONS INTERFACE 

The communications interface supports serial communications, Internet client applications, and 
Remote Access Service (RAS).  Windows CE supports the following options for serial I/O and networking 
through the Internet:  

• High-level Internet networking support (WinInet), using the HTTP protocol and the 
Dreamcast modem.  

• Low-level Internet networking support using a subset of Winsock version 1.1.  
• a RAS client.  
• Point-to-Point Protocol (PPP) for serial link and modem communications.  

SERIAL COMMUNICATIONS 

Serial I/O is used when there is a direct one-to-one connection between two devices. 
Transferring information over a serial cable connection is similar to reading from or writing to a file, and 
uses some of the same functions.  

NETWORK COMMUNICATIONS 

Windows CE supports a network stack that is accessible only through the Winsock interface. 
WinInet also uses Winsock internally and handles the details of setting up and managing socket 
connections.  Windows CE supports a RAS client, which is a multi-protocol router used to connect remote 
devices. The Windows CE version of RAS supports only one point-to-point connection at a time.  At the 
base of the network stack, Windows CE supports data-link layers for serial-link networks and local area 
networks (LANs). Dreamcast connects to a network through a built-in modem. Windows CE uses PPP to 
support serial communications. 

GRAPHICS DEVICE INTERFACE 

The Graphics Device Interface (GDI) module includes the low-level graphics functionality needed 
to display text and support DirectX graphics. The GDI provides the following low-level functions that 
support the higher-level graphics features of DirectX:  

• Loading and initializing fonts  
• Text output  
• Loading bitmaps for use in textures  
• Managing palettes  



 22 

Other necessary user interface capabilities have been replaced in Windows CE by DirectDraw. 

The GDI manages Windows messages, system timers, and a set of functions for manipulating 
rectangles. It also renders text and performs software bit block transfer (blit) operations. Hardware blits 
are performed using DirectDraw.  Color displays with a color depth of up to 32 bits per pixel (BPP) are 
supported, as well as memory and display device contexts (DCs). 

MIDI INTERFACE 

The MIDI interface supports the playing of high-quality music. Windows CE defines a minimum 
MIDI configuration of a General MIDI System for playing, not recording, music.  The MIDI API shares the 
2 MB of dedicated sound memory on Dreamcast, with the requirements of DirectSound. 

TIMING INTERFACES 

The timing interfaces support dates, times, and accurate timing activities by using high-resolution 
or multimedia timers.  The Windows CE timing APIs support system time, the date, file times, and high-
resolution timing for accurate time measurement within a game. For specific application timing, a timer 
object can set up its own thread to interrupt the system at specified time intervals. 

C RUN-TIME LIBRARY 

This Windows CE Toolkit 2.0 for Dreamcast (the toolkit) includes the complete Windows CE C 
run-time library. The functions include general math, trigonometry, random number generation, string 
manipulation, character conversion, and memory manipulation. The sin and cos functions declared in the 
FloatMathLib.h header and FloatMath.lib files are special, high-speed hardware implementations on the 
Hitachi SH-4. The other functions are declared in the Stdlib.h header file. 

 

WINDOWS CE FOR DREAMCAST CORE SYSTEM 
PROCESSES AND THREADS 

All Windows CE–based applications consist of a process and one or more threads. a process is a 
single instance of a running application. A thread is the basic unit to which the Windows CE operating 
system (OS) allocates processor time. A thread can execute any part of the process code, including parts 
currently being executed by another thread. Windows CE for Dreamcast supports up to 32 simultaneous 
processes.   

In a multithreaded process, each thread is allocated a slot in the Thread Local Storage (TLS), 
which is a method to store thread-specific data.  The operating system stores all dynamic-link libraries 
(DLL), the stack, the heap, the application code, and the process data section in the slot assigned to the 
process. DLLs are loaded at the top of the slot, followed by the stack, the heap, and the executable file 
(.exe). The bottom 64 KB of the slot is always left free. 

Each process can create multiple threads of execution. A thread is a single execution path within 
a process. Each process creates a primary thread. As each thread belongs to a particular process, a 
process and its threads share the same memory space. The total number of allowable threads is limited 
only by available physical memory. 



 23 

Each thread operates independently from its process. However, a thread often needs to be 
managed by the process that owns it. Windows CE supports thread synchronization by providing a set of 
wait objects. These objects stop a thread until a change in the wait object signals the thread to proceed. 
Supported wait objects include:  

• Critical-section objects.  
• Named and unnamed event objects.  
• Named mutual exclusion (mutex) objects.  
• Thread objects.  

Windows CE implements thread synchronization with a minimum of processor resources by using 
the kernel to handle thread-related tasks, such as scheduling, synchronization, and resource 
management. A game does not need to perform thread-management functions such as polling for 
process or thread completion. 

When a process is created, Windows CE allocates a 64-slot array for each running process. When 
a DLL attaches to a process, the DLL calls the TlsAlloc function, which looks through the array to find a 
free slot. The function then marks the slot "in use" and returns an index value to the newly assigned slot. 
If no slots are available, the function returns –1. Individual threads cannot call TlsAlloc. Only a process 
or DLL can call the function and it must do so before creating the threads that will use the TLS slot.  

To create a process, call the CreateProcess function. The lpApplicationName parameter must 
specify the name of the module to execute. Windows CE does not support passing NULL for 
lpApplicationName. 

To terminate a process, call the TerminateProcess function. Processes do not have exit codes 
and cannot terminate themselves. TerminateProcess cannot be used to terminate a protected server 
library for processes contained within it. 

To measure the performance for the application, use the GetThreadTimes function, which returns 
the total time a process has taken to perform a task. 

To create a thread, call the CreateThread function. Resources used by a thread can be freed 
when it is no longer needed by calling the ExitThread function. Calling ExitThread for the primary thread 
causes the application to terminate. 

Note: A process terminates if its primary thread is terminated, even if there are other active 
threads for the process. It also terminates if a related secondary thread generates an exception that is 
not handled. 

CREATING A THREAD LOCAL STORAGE 

Thread local storage (TLS) is the method by which each thread in a multithreaded process 
allocates a location in which to store thread-specific data. There are several situations in which one may 
want a thread to access unique data. For example, a racing game may implement instances of the same 
thread for each racer.  The DLL that provides the functions for various racers’ movements can use TLS to 
save data about the current speed or position for each racer. 

TLS uses a TLS array to save thread-specific data. When a process is created, Windows CE 
allocates a 64-slot array for each running process.  Only a process or DLL can call the function and it 
must do so before creating the threads that will use the TLS slot.  Once a slot has been assigned, each 
thread can access its unique data by calling the TlsSetValue function to store data in the TLS slot, or 
the TlsGetValue function to retrieve data from the slot. 



 24 

The following table describes the TLS functions that are supported by Windows CE. 

Function Description 

TlsAlloc  Allocates a TLS index. The index is available to any thread in the process for storing 
and retrieving thread-specific values. One must store this index in global memory, 
where all threads can retrieve its value.  

TlsFree  Releases the TLS index, making it available for reuse. 

TlsGetValue  Retrieves the value that is pointed to by the TLS index. 

TlsSetValue  Stores a value in the slot that is pointed to by the TLS index 

CREATING A PROCESS 

To start a process from within another process, call the CreateProcess function, which loads a 
new application into memory and creates a new process with at least one new thread. 

The following code example shows the CreateProcess function prototype. 

 
BOOL CreateProcess(LPCTSTR lpApplicationName, 
LPTSTR lpCommandLine, 
LPSECURITY_ATTRIBUTES lpProcessAttributes, 
LPSECURITY_ATTRIBUTES lpThreadAttributes, 
BOOL bInheritHandles, DWORD dwCreationFlags, LPVOID lpEnvironment, 
LPCTSTR lpCurrentDirectory, LPSTARTUPINFO lpStartupInfo, 
LPPROCESS_INFORMATION lpProcessInformation ); 

Because Windows CE does not support security or current directories and does not handle 
inheritance, the majority of the parameters must be set to NULL or 0. The following code example shows 
how the function prototype would look when all nonsupported features are taken into consideration. 

BOOL CreateProcess(LPCTSTR lpApplicationName, 
LPTSTR lpCommandLine, NULL, NULL, FALSE, 
DWORD dwCreationFlags, NULL, NULL, NULL, 
LPPROCESS_INFORMATION lpProcessInformation ); 

The first parameter, lpApplicationName, must contain a pointer to the name of the application to 
start. Windows CE does not support passing NULL for lpApplicationName and looks for the application in 
the following directories, in the following order:  

• The path specified in lpApplicationName, if one is listed.  
• An OEM-specified search path.  
• The Windows directory (\Windows).  
• The root directory in the object store (\).  



 25 

The lpCommandLine parameter specifies the command line to pass to the new process. The 
command line must be passed as a Unicode string. The dwCreationFlags parameter specifies the initial 
state of the process after loading. The following table describes all of the supported flags. 

Flag Description 

0 Creates a standard process. 

CREATE_SUSPENDED Creates a process with a suspended primary thread. 

DEBUG_PROCESS Creates a process to be debugged by the calling process.  

DEBUG_ONLY_THIS_PROCESS Creates a process to be debugged by the calling process, 
but doesn't debug any child processes that are launched 
by the process being debugged. This flag must be used in 
conjunction with DEBUG_PROCESS. 

CREATE_NEW_CONSOLE Creates a new console. 

The last parameter used by CreateProcess is lpProcessInformation. This parameter points to 
the PROCESS_INFORMATION structure, which contains data about the new process. The parameter 
can also be set to NULL. 

If the process cannot run, CreateProcess returns FALSE. For more information about the 
failure, call the GetLastError function. 

TERMINATING A PROCESS 

The most common way to terminate a process is to have it return from a WinMain function call. 
One can also terminate a process by having the primary thread of the process call the ExitThread 
function. a Windows CE process automatically terminates if its primary thread is terminated, even if there 
are other active threads in existence for the process. ExitThread returns the exit code of the process. 
One can determine the exit code of a process by calling the GetExitCodeProcess function. Specify the 
handle to the process, which one can obtain by calling the CreateProcess or OpenProcess function; 
the function returns the exit code. If the process is still running, the function returns the STILL_ACTIVE 
termination status. 

There are also other, less common, ways of terminating a process:  

• Use interprocess synchronization to instruct the process to terminate itself.  

• If the process has a message queue, send a WM_CLOSE message to the main window of the 
process. An application might not close if it does not receive this message and might display 
a message box.  

• Use the TerminateProcess function, which does not notify any attached DLLs that the 
process is terminating. This method should be used as a last resort.  

Note a process immediately terminates if a related secondary thread generates an unhandled 
exception. This is a change in behavior from Windows CE version 2.10 or earlier. 



 26 

CREATING A THREAD 

To create a thread, call the CreateThread function. The following code example shows the 
CreateThread function prototype. 

 
HANDLE CreateThread(LPSECURITY_ATTRIBUTES lpThreadAttributes, 
DWORD dwStackSize, LPTHREAD_START_ROUTINE lpStartAddress, 
LPVOID lpParameter, DWORD dwCreationFlags, LPDWORD lpThreadId ); 
 

Because Windows CE does not support the lpThreadAttributes and dwStackSize parameters, 
these parameters must be set to NULL or 0. The following table describes the remaining CreateThread 
parameters. 

Parameter Description 

lpStartAddress Points to the start of the thread routine 

lpParameter Specifies an application-defined value that is passed to the thread routine 

dwCreationFlags Set to 0 or CREATE_SUSPENDED 

lpThreadId Points to a DWORD that receives the new thread's identifier 

If CreateThread is successful, it returns the handle to the new thread and the thread identifier. 
One can also retrieve the thread identifier by calling the GetCurrentThreadId function from within the 
thread. In Windows CE, the value returned in GetCurrentThreadId is the actual thread handle. a 
handle to the thread can be retrieved by calling the GetCurrentThread function. This function returns a 
pseudo-handle to the thread that is valid only while in the thread. If CREATE_SUSPENDED is specified in 
the dwCreationFlags parameter, the thread is created in a suspended state and must be resumed with a 
call to the ResumeThread function. 

TERMINATING A THREAD 

To terminate a thread, call the ExitThread function.  The following code example shows the 
ExitThread function prototype. 

VOID ExitThread( DWORD dwExitCode ); 

Parameter Description 

DwExitCode  Specifies the exit code for the calling thread. Use the GetExitCodeThread function 
to retrieve a thread’s exit code. 

Calling ExitThread for the primary thread causes the application to terminate. 

THREAD SCHEDULING 

When the operating system creates a new process, it also creates at least one thread and assigns 
that thread a priority level. Processes are not assigned a priority class, so preemption is based solely on 
priority level.  



 27 

Threads with a higher priority run first. Threads with the same priority run in a round-robin 
fashion—when a thread has stopped running, all other threads of the same priority run before the 
original thread can continue. Threads at a lower priority do not run until all threads with a higher priority 
have either finished or have been blocked. If one thread is running and a thread of higher priority is 
unblocked, the lower-priority thread is immediately suspended and the higher-priority thread is 
scheduled. 

Threads run for a specific slice of time—called a quantum—which has a default value of 25 
milliseconds. An OEM can specify a different quantum. If, after the quantum has elapsed, the thread has 
not relinquished its time slice and is not time-critical, it is suspended and another thread is scheduled to 
run. Threads having a priority level of THREAD_PRIORITY_TIME_CRITICAL cannot be preempted except 
by an interrupt service routine (ISR). 

Threads at level 0 do not share time slices—instead, they run until they finish or yield due to a 
blocking function, such as WaitForSingleObject.  Threads at a lower priority do not run until all threads 
with a higher priority have finished.   All threads are created with a default priority of level 3, 
THREAD_PRIORITY_NORMAL.  

The highest levels of priority: 0 and 1, are used for real-time processing and device drivers. 
Levels 2, 3 (default), and 4 are used for kernel threads and normal applications. Levels 5, 6, and 7 are 
used for applications that can always be preempted by other applications. 

The following table shows these priority level values: 

Priority Value 

0 (highest) THREAD_PRIORITY_TIME_CRITICAL 

1 THREAD_PRIORITY_HIGHEST 

2 THREAD_PRIORITY_ABOVE_NORMAL 

3 (default) THREAD_PRIORITY_NORMAL 

4 THREAD_PRIORITY_BELOW_NORMAL 

5 THREAD_PRIORITY_LOWEST 

6 THREAD_PRIORITY_ABOVE_IDLE 

7 (lowest) THREAD_PRIORITY_IDLE 

For the most part, thread priorities are fixed and do not change. However, there is one 
exception, called priority inversion. If a low-priority thread is using a resource that a high-priority thread 
is waiting to use, the kernel temporarily boosts the priority of the low-priority thread until it releases the 
resource that is required by the higher-priority thread. 



 28 

PROCESSES AND THREADS SYNCHRONIZATION 

To coordinate multiple threads, wait functions and synchronization objects (passed to a wait 
function) can be used.  

The wait functions to use include: 

• WaitForSingleObject  

• WaitForMultipleObjects  

• MsgWaitForMultipleObjects  

A wait function does not return until its specified criteria are met. The type of wait function 
determines the set of criteria used. When a wait function is called, it checks if the wait criteria have been 
met. If not, the calling thread enters an efficient wait state, which consumes very little CPU time. 

The types of synchronization objects contain:  

• Critical-Section  
• Event  
• Mutex  
• Thread  

The state of a synchronization object is either signaled, which can allow the wait function to 
return, or non-signaled, which can prevent the function from returning.  

WAIT FUNCTIONS 

Windows CE supports two types of wait functions: single-object and multiple-object. The single-
object function is WaitForSingleObject. The multiple-object functions are WaitForMultipleObjects 
and MsgWaitForMultipleObjects. 

WaitForSingleObject requires a handle to each synchronization object. This function returns when 
one of the following occurs:  

• The specified synchronization object is set to the signaled state.  

• The state of a synchronization object is either signaled, which can allow the wait function to 
return, or non-signaled, which can prevent the function from returning.  

• The time-out interval elapses.  

To specify that the wait does not time out, set the time-out interval to INFINITE.  

WaitForMultipleObjects and MsgWaitForMultipleObjects enable the calling thread to 
specify an array that contains one or more synchronization object handles. These functions return when 
one of the following occurs:  

The state of any one of the specified objects is set to be signaled, or the states of all objects are 
set to be signaled.   In the function call, the developer control whether one or all of the states are 
required to trigger a return.  The time-out interval elapses.  

To specify that the wait does not time out, set the time-out interval to INFINITE.  



 29 

The following code example shows two objects as parameters in the function call to 
WaitForMultipleObjects, which does not return until one of the objects is set to be signaled. The 
CreateEvent function creates two event objects. 

int index;  
DWORD dwEvent;  
TCHAR szError[100]; 
HANDLE hEvents[2];  
 
for (index = 0; index < 2; ++index)  
{  
  if (!(hEvents[index] = CreateEvent (  
                            NULL,       // No security attributes 
                            FALSE,      // Autoreset event object 
                            FALSE,      // Initial state is nonsignaled. 
                            NULL)))     // Unnamed object 
  {  
    swprintf (szError, TEXT("CreateEvent error: %d\n"), GetLastError()); 
  }  
}  
 
dwEvent = WaitForMultipleObjects ( 
                            2,          // Number of objects in array 
                            hEvents,    // Array of objects 
                            FALSE,      // Wait for any. 
                            INFINITE);  // Indefinite wait 
switch (dwEvent)  
{  
  case WAIT_OBJECT_0 + 0:  
    break;  
 
  case WAIT_OBJECT_0 + 1:  
    break;  
 
  default:  
    swprintf (szError, TEXT("Wait error: %d\n"), GetLastError()); 
} 

CRITICAL SECTION SYNCHRONIZATION OBJECTS 

When multiple threads have shared access to the same data, the threads can interfere with one 
another. a critical section object protects a section of code from being accessed by more than one 
thread. A critical section is limited, however, to only one process or DLL and cannot be shared with other 
processes. 

Critical sections work by having a thread call the EnterCriticalSection function to indicate that 
it has entered a critical section of code. If another thread calls EnterCriticalSection and references the 
same critical section object, it is blocked until the first thread calls the LeaveCriticalSection function. A 
critical section can protect more than one section of code as long as each section of code is protected by 
the same critical section object. 

To use a critical section, a CRITICAL_SECTION structure must be declared. Because other 
critical section functions require a pointer to this structure, be sure to allocate it within the scope of all 
functions that are using the critical section. Then, create a handle to the critical section object by calling 
the InitializeCriticalSection function.  



 30 

To request ownership of a critical section, call EnterCriticalSection; to release ownership, call 
LeaveCriticalSection. When a critical section is no longer used, call the DeleteCriticalSection 
function to release the system resources that were allocated when the critical section is intialized. 

The following code example shows the prototype for the critical section functions. Notice that 
they all require a pointer to the CRITICAL_SECTION structure. 

void InitializeCriticalSection (LPCRITICAL_SECTION lpCriticalSection); 
void EnterCriticalSection (LPCRITICAL_SECTION lpCriticalSection); 
void LeaveCriticalSection (LPCRITICAL_SECTION lpCriticalSection); 
void DeleteCriticalSection (LPCRITICAL_SECTION lpCriticalSection); 
 

The following code example shows how a thread initializes, enters, and leaves a critical section. 
This example uses the try-finally structured exception-handling syntax to ensure that the thread calls 
LeaveCriticalSection to release the critical section object.  

void CriticalSectionExample (void) 
{ 
  CRITICAL_SECTION csMyCriticalSection; 
 
  InitializeCriticalSection (&csMyCriticalSection); 
 
  __try 
  { 
    EnterCriticalSection (&csMyCriticalSection); 
 
    // Code to access the shared resource goes here. 
  } 
  __finally 
  { 
    // Release ownership of the critical section 
    LeaveCriticalSection (&csMyCriticalSection); 
  } 
} // End of CriticalSectionExample code 

EVENT SYNCHRONIZATION OBJECTS 

An event synchronization object allows one thread to notify another thread that an event has 
occurred. A thread uses the CreateEvent function to create an event object. The creating thread 
specifies the initial state of the object and whether it is a manual-reset or auto-reset event object. The 
creating thread can also specify a name for the event object. Threads in other processes can open a 
handle to an existing event object by specifying its name in a call to CreateEvent. 

Windows CE uses event objects to tell a thread when to perform its task or to indicate that a 
particular event has occurred. For example, a thread that writes to a buffer sets the event object to the 
signaled state when it has finished writing. Setting an event object to notify the thread that its task is 
finished allows the thread to start performing other tasks immediately. 

The following code example shows how an application uses event objects to prevent several 
threads from reading from a shared memory buffer while a master thread is writing to that buffer. The 
master thread uses CreateEvent to create a manual-reset event object. It resets the event object to its 
non-signaled state when it is writing to the buffer, and then sets the object to its signaled state when it 
has finished. The master thread then creates several reader threads and an auto-reset event object for 
each thread. Each reader thread sets its event object to its signaled state when it is not reading from the 
buffer. 



 31 

#define NUMTHREADS 4  
 
HANDLE hGlobalWriteEvent;  
 
void CreateEventsAndThreads ()  
{ 
  int index;  
  DWORD dwIDThread;  
  HANDLE hThread, 
         hReadEvents[NUMTHREADS];  
   
  hGlobalWriteEvent = CreateEvent (  
                              NULL,         //No security attributes 
                              TRUE,         //Manual-reset event 
                              TRUE,         //Initial state is signaled. 
                              TEXT("WriteEvent"));  
                                            // Object name 
  if (!hGlobalWriteEvent)  
  {  
    // CreateEvent failed. Insert code here for error handling. 
    // ... 
  } 
 
  for (index = 0; index < NUMTHREADS; ++index)  
  { 
    hReadEvents[index] = CreateEvent (  
                              NULL,         //No security attributes 
                              FALSE,        //Autoreset event 
                              TRUE,         //Initial state is signaled. 
                              NULL);        //Object not named 
 
    if (!hReadEvents[index])  
    { 
      // CreateEvent failed. Insert code here for error handling. 
      // ... 
    } 
 
    hThread = CreateThread ( 
                  NULL,                   // Thread security attributes 
                  0,                      // Initial thread stack size 
                  (LPTHREAD_START_ROUTINE) ThreadFunction,  
                                          // Pointer to thread function 
                  &hReadEvents[index],    // Argument for new thread 
                  0,                      // Creation flags 
                  &dwIDThread);           // Returned thread identifier 
 
    if (!hThread)  
    { 
      // CreateThread failed. Insert code here for error handling. 
      // ... 
    } 
  } 
} 

The following code example shows how to use the ResetEvent function to reset the state of 
hGlobalWriteEvent, an application-defined global variable, to its non-signaled state before the master 
thread writes to the shared buffer. This operation blocks the reader threads from starting a read 



 32 

operation. The master thread then uses WaitForMultipleObjects to wait for all reader threads to finish 
any current read operations. When WaitForMultipleObjects returns, the master thread can safely 
write to the buffer. After it has finished writing, the master thread sets hGlobalWriteEvent and all the 
reader-thread events to signaled. The reader threads can then resume read operations. 

 
VOID WriteToBuffer (HANDLE hReadEvents[NUMTHREADS])  
{ 
  int index; 
  DWORD dwResult;  
  TCHAR szError[200]; 
   
  if (!ResetEvent (hGlobalWriteEvent))  
  {  
    // ResetEvent failed. Insert code here for error handling. 
    // ... 
  }  
 
  dwResult = WaitForMultipleObjects (  
                          NUMTHREADS,     //Number of handles in array 
                          hReadEvents,    //Array of read-event handles 
                          TRUE,           //Wait until all are signaled. 
                          INFINITE);      //Indefinite wait 
 
  switch (dwResult)  
  { 
    case WAIT_OBJECT_0:  
      // Write to the shared buffer. 
      break; 
 
    default:  
      // Error occurred. 
      wsprintf (szError, TEXT("Wait error: %d\n"), GetLastError ());  
  }  
 
  if (!SetEvent (hGlobalWriteEvent))  
  { 
    // SetEvent failed. Insert code here for error handling. 
    // ... 
  } 
 
  for (index = 0; index < NUMTHREADS; index++)  
  { 
    if (!SetEvent (hReadEvents[index]))  
    {  
      // SetEvent failed. Insert code here for error handling. 
      // ... 
    }  
  } 
} 
 

MUTEX SYNCHRONIZATION OBJECTS 

A mutex object is a synchronization object whose state is set to signaled when it is not owned by 
any thread and non-signaled when it is owned. Its name comes from its usefulness in coordinating 
mutually exclusive access to a shared resource. Only one thread at a time can own a mutex object. For 



 33 

example, to prevent two threads from writing to shared memory at the same time, each thread waits for 
ownership of a mutex object before running the code that accesses the memory. After writing to the 
shared memory, the thread releases the mutex object. 

A thread uses the CreateMutex function to create a mutex object. The creating thread can 
request immediate ownership of the mutex object and can also specify a name for the mutex object. 
Threads in other processes can open a handle to an existing mutex object by specifying its name in a call 
to CreateMutex. 

Any thread with a handle to a mutex object can use one of the wait functions to request 
ownership of the mutex object. If the mutex object is owned by another thread, the wait function blocks 
the requesting thread until the owning thread releases the mutex object with the ReleaseMutex 
function. The return value of the wait function indicates the reason that the function returned.  

Once a thread owns a mutex, it can specify that mutex in repeated calls to one of the wait 
functions without blocking it, thereby preventing a thread from blocking itself while waiting for a mutex 
that it already owns. To release ownership, the thread must call ReleaseMutex once for each time that 
the mutex satisfies the conditions of a wait function. 

If a thread terminates without releasing ownership of a mutex object, the mutex object is 
considered abandoned. A waiting thread can acquire ownership of an abandoned mutex object, but the 
wait function return value indicates that the mutex object is abandoned. Typically, an abandoned mutex 
object indicates that an error has occurred and that any shared resource being protected by the mutex 
object is in an undefined state. If the thread proceeds as though the mutex object had not been 
abandoned, the object’s abandoned flag is cleared when the thread releases ownership. With the flag 
cleared, typical behavior is restored if a handle to the mutex object is subsequently specified in a wait 
function.  

The following code example shows how a process uses CreateMutex to create a named mutex 
object.  

HANDLE hMutex;  

 
if (!(hMutex = CreateMutex (NULL,         // No security attributes 
                            FALSE,        // Mutex not owned 
                            TEXT("MutexToProtectDatabase"))))   
                                          // Mutex-object name 
{ 
  // CreateMutex failed. Insert code here for error handling. 
  // ... 
} 

Before a thread of this process can write to the database, it must have ownership of the mutex. 
It first requests ownership of the mutex. If it gets ownership, the thread writes to the database, and then 
releases ownership. 

The following code example shows how to open a handle to an existing mutex object. It also 
uses the try-finally structured exception handling syntax to ensure that the thread properly releases the 
mutex object. To prevent the mutex object from being abandoned inadvertently, if the try block includes 
a call to the TerminateThread function, the finally block of code will not run. 

BOOL WriteToDatabase (HANDLE hMutex)  
{  
  DWORD dwResult;  
 



 34 

  dwResult = WaitForSingleObject (  
                              hMutex,   // Handle of mutex 
                              5000L);   // Five-second time-out interval 
  switch (dwResult)  
  { 
    case WAIT_OBJECT_0:  
      __try  
      {  
        // Insert code here to write to the database. 
        // ... 
      }  
      __finally  
      {  
        if (!ReleaseMutex (hMutex))  
        {  
          // Insert code here for error handling. 
          // ... 
        }  
      }  
      break;  
 
    case WAIT_TIMEOUT:  
      // Cannot get mutex ownership due to time-out 
      return FALSE;  
 
    case WAIT_ABANDONED:  
      // Got ownership of the abandoned mutex object 
      return FALSE;  
  } 
  return TRUE;  
} 
 

USING THREAD OBJECTS 

A thread synchronization object is created when a new thread is created by calling either the 
CreateProcess or CreateThread function. Its state is set to non-signaled while the thread is running, 
and set to signaled when the thread terminates. 

 

MANAGING MEMORY 

Windows CE optimizes memory management for game development by using virtual memory and 
memory-mapped files. 

The Hitachi SH-4 CPU for the Dreamcast system uses 32-bit memory addressing, which allows 
the SH-4 to address up to 4 GB of memory. The Windows CE kernel partitions this space into 2 GB of 
physical addresses and 2 GB of virtual addresses. The following illustration depicts the Windows CE 
memory architecture. 



 35 

 

Figure 5: Windows CE for Dreamcast Memory Architecture 

The 2 GB of physical address space corresponds directly to the underlying hardware memory and 
is available only to the kernel. The 2 GB of virtual memory is accessible by the processes running on 
Windows CE. A process perceives the virtual address space as one contiguous, unshared block of 
memory. The kernel maps all virtual memory addresses into physical addresses in hardware memory. 

Of the 2 GB of virtual address space, 1 GB is made available for individual use by the processes. 
The 1 GB is subdivided into 32 slots, of 32 MB each. The slot memory of a process contains its code, 
data, stack, and heap. While the slot architecture limits the number of processes to 32, the total number 
of threads within a process is limited only by available memory. 

The kernel isolates each process by assigning it to a unique slot and protecting that slot against 
access by other processes. The kernel prevents a process from accessing memory outside its own slot by 
generating an exception. Applications can check for and handle such exceptions with try-except 
statements. 

The remaining 1 GB of virtual memory is shared among all processes and is used for large data 
items, such as reserved physical memory blocks and memory-mapped files. These files are useful for 
interprocess communication because more than one process can map the same file and share its 
contents. Memory mapping allows for fast data transfer between cooperating processes and between a 
driver and an application.  Page protections and demand paging are supported. 

VIRTUAL MEMORY 

The addresses that a Dreamcast game uses to refer to its code and data are virtual addresses, 
not physical addresses. A virtual address is an artificial address created at startup by Windows CE that 
exists independently from the physical memory in the game console. The kernel maintains the 
relationship between the virtual address space of an application and the physical address space on the 
hardware.  

The virtual addresses referenced by an application’s code are translated into physical addresses 
by the SH-4 CPU. This translation is performed by the SH-4’s translation look-aside buffer (TLB), an 



 36 

internal table that maps addresses transparently. Each entry in the TLB maps one page of virtual address 
space onto a page of physical memory. 

No correspondence is needed between an address location in virtual and physical memory. 
Memory pages that are contiguous in virtual space can be mapped to non-contiguous pages of physical 
memory. The mapping is invisible to the application, since applications use virtual addresses exclusively. 

The following illustration shows how the kernel maps virtual memory to physical memory. 

 

Figure 6: Windows CE for Dreamcast Memory Mapping 

In Windows CE for Dreamcast, the page size is 4 KB. For certain kinds of data, a page size of 
either 64 KB or 1 MB may be used. Because each TLB entry contains information about the size of the 
page to which it refers, references to pages of different sizes may coexist in the same TLB. An application 
has no control over the page size used and therefore cannot change the page size. 

Each section of an executable file or dynamic-link library (DLL) is aligned on a page boundary 
when it is loaded. This results in an average of half a page of unused memory. For example, to allocate 1 
KB of memory, an entire 4 KB page must be dedicated. The 3 KB of unused memory is not available to 
any other process. However, if the same application requests an additional 1-3 KB of memory, that 
additional memory is allocated from the unused portion of that same 4 KB page. 

With virtual memory, the virtual address space can be larger than the physical address space. 
Windows CE keeps track of which pages in virtual memory are present in physical memory and which 
pages are not. 

When an application references a page that is not present in physical memory, a page fault 
occurs. A page fault is an interrupt that is intercepted by Windows CE, which then loads the desired page 
automatically and transparently. This process allows an application to be written as if the hardware on 
which it runs contained more physical memory than it does. 



 37 

An additional benefit of virtual memory is protection from system crashes. Windows CE is aware 
of which pages belong to which processes, and uses the built-in SH-4 CPU protection features. These 
features prevent a process from accessing pages that do not belong to it. 

As the SH-4 processor’s TLB contains 64 entries, a maximum of 64 pages of memory can be 
mapped at one time. When a game references virtual memory that is not mapped to physical memory, a 
page fault interrupt occurs. This interrupt is serviced by the kernel, which then loads a new entry into the 
TLB. Before writing the new entry, the kernel first determines which of the old entries to discard. The 
game then resumes. If a discarded entry is referenced at a later time, the process repeats, and the page 
is loaded again. 

While Windows CE for Dreamcast does support virtual memory, little use is made of demand 
paging. Under Windows CE for Dreamcast, executable files are always loaded completely and locked in 
memory. Their pages are never discarded. Furthermore, Dreamcast includes no write-able storage media, 
making it impossible to swap out data pages, so these pages are never discarded either. That is the 
reason why game playing will not be subject to unpredictable pauses while the operating system loads 
some previously memory page from the disc.   

VIRTUAL MEMORY ISSUES 

Only data is subject to paging. When a process is started or LoadLibrary is called, all of the 
appropriate code is loaded into memory immediately—it is never paged out until the process is 
terminated or the library is removed using FreeLibrary.  

To minimize the number of page fault interrupts, pay attention to the distribution of the game’s 
memory references. Whenever possible, the data references within a section of code should all be made 
to the same set of memory pages. 

The scarcity of TLB entries can be offset through the use of pre-allocated blocks of physical 
memory. These blocks can use page sizes of either 64 KB or 1 MB, instead of the normal 4 KB. Using a 
physical memory block increases the amount of memory that can be addressed without causing a page 
fault.   

Since the Dreamcast CPU’s translation look-aside buffer (TLB) can map only virtual memory 
pages to physical memory at any one time, when a game references a virtual memory address which is 
outside of these 68 pages, a page fault occurs, forcing the operating system to suspend the game’s 
execution and map the virtual page containing the offending address to physical memory. In order to do 
this; the operating system must first make room in the TLB by unmapping a previously mapped page, 
creating the potential for future page faults. 

These 64 pages may be thought of as a form of cache, and a page fault may be thought of as a 
cache miss. As with more conventional caches, excessive cache misses can degrade overall performance. 
Programmers must strive to localize both code and data references as much as possible. 

MEMORY-MAPPED FILE 

A memory-mapped file is a file that is mapped to a region of virtual address space. A space is not 
necessarily present in physical memory. Using a memory-mapped file is a convenient way to read from 
files that are too large for physical memory. 

The physical memory associated with a memory-mapped file is mapped into the 1 GB of virtual 
address space that is shared by all processes, not into the 32 MB slot of a specific process. 



 38 

The pages of a memory-mapped file are loaded as an application references them. If sufficient 
physical memory is not available, previously loaded pages are discarded to make room. A later reference 
to a discarded page causes that page to be loaded again. 

To use a file as a memory-mapped file, open it with CreateFileForMapping and then call 
CreateFileMapping to get a handle to a file-mapping object. Pass this handle to MapViewOfFile to 
map all or part of the contents of the file to virtual memory. MapViewOfFile returns a pointer to the 
virtual memory region, from which the contents of the file can be read. 

HANDLING SYSTEM OBJECTS 

A system object is a data structure that represents a system resource, such as a file, graphic 
image, or thread. The system object categories include:  

• User, which supports window management.  
• Graphics Device Interface (GDI), which supports graphics.  
• Kernel, which supports memory management, process execution, and interprocess 

communications.  

An application cannot directly access object data or the system resource that the object 
represents. Instead, an application must obtain the object’s handle to examine or to modify that system 
resource.  Each object handle has an entry in an internally maintained table. These entries contain the 
private addresses of the resources and the means to identify the resource type. 

OBJECT MANAGER 

A system object consists of a header and object-specific attributes. All system objects have the 
same structure, which allows a single object manager to maintain all objects.  The object header includes 
items such as the object name so that other processes can reference that object by name. The object 
header also includes a security descriptor so that the object manager can control which processes access 
the system resource. 

The object manager performs the following tasks:  

• Create objects  
• Verify that a process has the right to use the object  
• Create object handles and return them to the caller  
• Maintain resource quotas  
• Close handles to objects  
• Object Interface 

Windows CE provides functions that perform the following operations:  

• Create an object  
• Get an object handle  
• Get information about the object  
• Set information about the object  
• Close the object handle  
• Destroy the object  

When a process terminates, the system automatically closes handles and destroys objects 
created by the process. However, when a thread terminates, the system usually does not close handles 
or destroy objects. The only exceptions are window objects, which are destroyed when the creating 
thread terminates. 



 39 

OBJECT HANDLE LIMITATIONS 

Some objects support only one handle at a time. The system provides the handle when an 
application creates the object and invalidates the handle when the application destroys the object. Other 
objects support multiple handles to a single object. The operating system automatically removes the 
object from memory after the last handle to the object is closed. 

The total number of open handles in the system is limited by the amount of memory available. 
Some object types support a limited number of handles for each process, while others support a limited 
number of handles in the system. 

MANAGING USER OBJECTS 

User objects support window management. The ratio of objects to handles is 1:1, that is, there 
can be only one handle per object. However, the ratio of processes to handles is M:1, and there is no 
per-process limit on user object handles. 

A user object handle is available to every process, provided that the process has security access 
to the user object. 

After the window object has been created, the application uses the window handle to display or 
change the window. The handle remains valid until the window object is destroyed. 

The CreateWindow and CreateWindowEx creator functions either create the window object 
and an object handle or return the existing window object handle. The DestroyWindow destroyer 
function removes the object from memory, which invalidates the object handle. 

The following illustration shows how an application creates a window object. (Currently, the only 
user object type is Window.) The CreateWindow function creates the window object and returns an 
object handle. 

 

Figure 7: Window Creation in Windows CE for Dreamcast 

The following illustration shows how the application destroys the window object. The 
DestroyWindow function removes the window object from memory, which invalidates the window 
handle and makes the handle inaccessible. 



 40 

 

Figure 8: Window Destruction in Windows CE for Dreamcast 

MANAGING GDI OBJECTS 

GDI objects support graphics. The ratio of objects to handles is 1:1, only one handle per object. 
GDI object handles are global and are accessible to every process, provided that the process has security 
access to the GDI object. 

The following table lists the GDI object types, along with the creator and destroyer functions of 
each object. The creator functions create the object and return a new object handle. The destroyer 
functions remove the object from memory, which invalidates the object handle. 

GDI object Creator function Destroyer function 

Bitmap LoadBitmap, 
CreateBitmap, 
CreateCompatibleBitmap, 
CreateDIBSection 

DeleteObject  

Brush CreatePatternBrush, 
CreateDIBPatternBrushPt, 
CreateSolidBrush 

DeleteObject  

Device 
Context 

CreatCompatibleDC, 
CreateDC 

DeleteDC 

Font CreateFontIndirect DeleteObject 

Memory DC CreateCompatibleDC DeleteDC  

Pallette CreatePallette DeleteObject  

Pen CreatePen, DeleteObject  



 41 

CreatePenIndirect 

Region CreateRectRgnIndirect, 
CreateRectRgn 

DeleteObject  

MANAGING KERNEL OBJECTS 

Kernel objects support memory management, process execution, and interprocess 
communications. They are process-specific. A process must either create the kernel object or open an 
existing kernel object to obtain a kernel object handle. The per-process limit on kernel handles is 2^30. 
Most kernel objects, those that are used for process and thread communications, support multiple 
handles to a single object. 

Any process can create a new handle to an existing kernel object, for example, one created by 
another process, provided that the process knows the name of the object and has security access to it. 
Kernel object handles include access rights that indicate the actions that can be allowed or denied to a 
process. An application specifies access rights when it creates an object or obtains an existing object 
handle. Each type of kernel object supports its own set of access rights. For example, event handles and 
file handles can have set access, or wait access, or both. 

The following illustration shows how an application creates an event object. The CreateEvent 
function creates the event object and returns an object handle. 

 

Figure 9: Event Object Creation in Windows CE for Dreamcast 

After the event object has been created, the application can use the event handle to set or wait 
for the event. The handle remains valid until the application closes the handle or terminates. 

An object remains in memory as long as at least one object handle exists. The following 
illustration shows how an application uses CloseHandle to close event object handles. When there are 
no event handles, the system removes the object from memory. 



 42 

 

Figure 10: Event Object Destruction in Windows CE for Dreamcast 

The system manages file objects somewhat differently from other kernel objects. File objects 
contain a file pointer to the next byte to be read. Whenever an application creates a new file handle, the 
system creates a new file object. The following illustration shows how more than one file object can refer 
to a single file. 

 

Figure 11: Multiple File Objects Referring to a Single File in Windows CE for Dreamcast 

The following table lists the kernel object types, along with the creator and destroyer functions of 
each object. The creator functions either create the object and an object handle or create a new handle 
to an existing object. The destroyer functions close the object handle. When an application closes the last 
handle to a kernel object, the system removes the object from memory. 

Note: CreateFile is used when a mapped file is not needed. CreateFileForMapping is used 
for mapped files, along with CreateFileMapping. 



 43 

Kernel object Creator function Destroyer function 

Communications device CreateFile CloseHandle  

Event CreateEvent CloseHandle  

File CreateFile CloseHandle,  

File mapping CreateFileMapping CloseHandle  

Find file FindFirstFile FindClose  

Heap HeapCreate HeapDestroy  

Module LoadLibrary, 
GetModuleHandle 

FreeLibrary  

Mutex CreateMutex CloseHandle  

Process CreateProcess, 
OpenProcess, 
GetCurrentProcess 

CloseHandle 
TerminateProcess  

Socket socket, accept closesocket 

Thread CreateThread, 
GetCurrentThread 

CloseHandle, 
TerminateThread  

TIMERS 

A timer is a system resource one can set to notify an application at regular intervals. Windows CE 
for Dreamcast supports two broad categories of timers:  

Low-resolution timers are used for events that do not require a high degree of start-time 
accuracy, such as accessing hardware resources or performing application maintenance.  

High-resolution, or multimedia, timers are used to coordinate events that require a high degree 
of synchronization, such as matching sound to graphics.  

Timer Terminology 

Resolution: The accuracy, or tolerance factor, of the timer. For example, a timer resolution of 10 
milliseconds results in the timer being accurate to within plus or minus 10 milliseconds.  

Interval: For a low-resolution timer, it is the time-out value. For a one-shot high-resolution timer, 
it is the amount of time that passes before the timer starts. In the case of a periodic high-resolution 
timer, it is the amount of time before the timer starts, plus the amount of time between each notification 
to the application, until a call to timeKillEvent is made and the timer is destroyed.  



 44 

Start lag: The lag time between when the timer is set to start and when it actually starts. This 
number cannot be determined in advance and depends on a number of factors, including system 
resources usage.  

Greatest Common Factor (GCF): The lowest common denominator of all timer intervals currently 
running on the timer thread. The system automatically determines and adjusts the GCF, which directly 
affects the amount of system resources dedicated to monitoring the starting times of all timers currently 
running on the thread.  

High-resolution Timer: a timer that requires a high degree of precision (has a very low tolerance 
level), but consumes a higher amount of system resources. For example, setting the value to zero would 
cause the timer to start at the most precise time requested, within the resolution’s capabilities. High-
resolution timers are recommended for tasks that require a high degree of timing precision, such as when 
coordinating multimedia events. Use timeSetEvent to create and set a high-resolution timer. 

Low-resolution Timer: a timer that requires a low or moderate degree of precision (has a greater 
tolerance level), but consumes a lesser amount of system resources.  For example, setting the value to 
50 causes the timer to start within 50 milliseconds of the time requested. Low-resolution timers are 
Windows-based and are recommended for tasks that do not require a high degree of timing precision, 
such as requesting hardware resources. Use SetTimer to create and set a low-resolution timer.  

Example of Creating Timers Using SetTimer 

The following code example shows how to create two timers using SetTimer. The first timer is 
set for every 10 seconds, the second for every 5 minutes.  

 
// Set two timers.  
 SetTimer ( 
          hwnd,               // Handle of main window  
          IDT_TIMER1,         // Timer identifier  
          10000,              // 10-second interval  
          (TIMERPROC) NULL);  // No timer callback  
  
 SetTimer ( 
          hwnd,               // Handle of main window  
          IDT_TIMER2,         // Timer identifier  
          300000,             // 5-minute interval  
          (TIMERPROC) NULL);  // No timer callback  

  

Example of Determining a Timer’s Best Resolution 

The following code example shows how to call timeGetDevCaps to determine the minimum and 
maximum timer resolutions of high-resolution timers. 

 
TIMECAPS timecaps; 
 
if (timeGetDevCaps (&timecaps, sizeof (TIMECAPS)) != TIMERR_NOERROR)  
{ 
  // Error occurred; application cannot continue. Insert code here for 
  // error handling 
  // ... 
} 



 45 

Example of Processing WM_TIMER Messages 

The following code example shows how to process the WM_TIMER messages generated by the 
two example timers. A WM_TIMER case statement can be added to the window procedure specified by 
the hWnd parameter of SetTimer.  

case WM_TIMER:  
  
  switch (wParam)  
  {  
    case IDT_TIMER1:  
      // Process the 10-second timer.  
      return 0;  
 
    case IDT_TIMER2:  
      // Process the 5-minute timer.  
      return 0;  
  }  

Example of Using a Callback Function to Process WM_TIMER Messages 

An application can also create a timer whose WM_TIMER messages are processed by an 
application-defined callback function, not by the main window procedure. The following code example 
creates a third timer and uses the callback function MyTimerProc to process the timer’s WM_TIMER 
messages. 

// Set the timer.  

 SetTimer (hwnd,                     // Handle of main window  
          IDT_TIMER3,               // Timer identifier  
          5000,                     // 5-second interval  
          (TIMERPROC) MyTimerProc); // Timer callback  

The calling convention for MyTimerProc must be based on the TimerProc callback function.  

Example of Monitoring the Message Queue 

The following code example shows a message loop for an application that has created a timer 
without specifying a window handle. The loop monitors the message queue for WM_TIMER messages 
and dispatches them to a window procedure to process messages.  

 
MSG msg;                  // Message structure  
HWND hwndTimer;           // Handle of the window for timer  
                          // messages 
while (GetMessage (&msg,  // Message structure  
                   NULL,  // Handle of window receiving the message 
                   0,     // Lowest message to examine  
                   0))    // Highest message to examine  
{  
 
  // Post WM_TIMER messages to the window (hwndTimer) procedure.  
  if (msg.message == WM_TIMER)  
    msg.hwnd = hwndTimer; 
 
  // Translates virtual-key messages into character messages 
  TranslateMessage (&msg);  
 



 46 

  // Dispatches message to the window (hwndTimer) procedure  
  DispatchMessage (&msg);   
}  

  

Example of Destroying Timers 

The following code example shows how to destroy the timers identified by the constants 
IDT_TIMER1, IDT_TIMER2, and IDT_TIMER3.  

// Destroy the timers.  

KillTimer (hwnd, IDT_TIMER1);  

KillTimer (hwnd, IDT_TIMER2);  

KillTimer (hwnd, IDT_TIMER3);  

FILE SYSTEMS AND FILES 

As with other Win32 operating systems, Windows CE for Dreamcast employs handle-based file 
access. CreateFile returns a handle that references a created or opened file. The read, write, and 
information functions all use that handle to determine which file to act on. The read and write functions 
use a file pointer to determine where in the file they read and write.  Windows CE for Dreamcast does 
not use the concept of the current directory. Instead, all references to an object are given in the full path 
name. 

Windows CE for Dreamcast supports the following file systems:  

• CD-ROM  
• Windows  
• PC  
• CD-ROM File System 

The CD-ROM file system is a 1 GB double-density partition and is stored on the Dreamcast CD 
(the game application CD). The application views it as the \CD-ROM\ directory. 

The Windows CE file system does not use drive letters, while the Windows 9x or Windows NT file 
systems do. When using the CD-ROM file system, the full path name must always be included. 

The CD-ROM file system has higher transfer rates than a standard CD-ROM. Because Dreamcast 
CDs rotate at a constant angular velocity, the transfer rate varies with the location on the disc. Toward 
the center of the disc, drive performance is equivalent to a 6X CD-ROM drive. Toward the outer edge of 
the disc, performance is equivalent to a 12X CD-ROM drive. 

To access a directory, a directory handle must be obtained, and it is a unique identifier for each 
directory. Pass the directory handle to GetFileInformationByHandle and GetFileSize. 



 47 

The following code example shows how to obtain a handle to a directory by using CreateFile. 

hDir = CreateFile (szDirName, 
                   GENERIC_READ, 
                   FILE_SHARE_READ, 
                   NULL, 
                   OPEN_EXISTING, 
                   FILE_FLAG_BACKUP_SEMANTICS, 
                   NULL); 

Windows File System 

The Windows file system is stored in the OS image on the Dreamcast CD and is loaded into 
memory when a game starts. The application views it as the \Windows\ directory. The file system 
contains the operating system binary and driver files, such as the GD-ROM and Maple drivers. One can 
optionally store additional files, such as DirectX DLLs, game executable file, and any data files that need 
to be resident in memory. 

PC File System 

The PC file system is stored only on the  development computer and is viewed as the \PC\ 
directory. The PC file system is a convenient location to store files needed during development and 
debugging, but not need to be placed on the GD-ROM emulator. 

File System Functions 

The following table lists the file system functions supported under Windows CE for Dreamcast. 

Function Description 

CloseHandle Closes an open object handle. 

CreateFile Creates, opens, or truncates a file, directory, communications 
resource, disk device, or console. 

DeviceIoControl Sends a control code, such as 
IOCTL_SEGACD_CD_PLAYTRACK, directly to a specified 
device driver. 

FindClose Closes the specified search handle. 

FindFirstFile Searches a directory for a specified file or subdirectory. 

FindNextFile Continues a file search from a previous call to FindFirstFile 
or FindNextFile. 

GetFileAttributes Retrieves attributes of a file or directory. 

GetFileInformationByHandle Retrieves information about a file. 

GetFileSize Retrieves the size, in bytes, of the specified file. 



 48 

ReadFile Reads data from a file. 

 

SetFilePointer Moves the file pointer of an open file. 

WriteFile Writes data to a file. 

 

File Read/Write Example 

The following code example shows how to append one file to the end of another. The example 
uses CreateFile to open two files: One.txt for reading and Two.txt for writing. ReadFile and WriteFile 
then append the contents of One.txt to the end of Two.txt by reading and writing the 4 KB blocks. 

void AppendExample (void) 
{ 
  HANDLE hFile, hAppend; 
  DWORD dwBytesRead, dwBytesWritten, dwPos; 
  char buff[4096]; 
  TCHAR szMsg[1000]; 
 
  // Open the existing file. 
 
  hFile = CreateFile (TEXT("\\CD-ROM\\ONE.TXT"),       // Open One.txt 
                      GENERIC_READ,           // Open for reading 
                      0,                      // Do not share 
                      NULL,                   // No security 
                      OPEN_EXISTING,          // Existing file only 
                      FILE_ATTRIBUTE_NORMAL,  // Normal file 
                      NULL);                  // No attribute template 
 
  if (hFile == INVALID_HANDLE_VALUE) 
  { 
    // Error-handling code goes HERE. 
    wsprintf (szMsg, TEXT("Could not open ONE.TXT")); 
    return; 
  } 
 
  // Open the existing file, or if the file does not exist, 
  // create a new file. 
 
  hAppend = CreateFile (TEXT("\\PC\\TWO.TXT"),       // Open Two.txt 
                        GENERIC_WRITE,          // Open for writing 
                        0,                      // Do not share 
                        NULL,                   // No security 
                        OPEN_ALWAYS,            // Open or create 
                        FILE_ATTRIBUTE_NORMAL,  // Normal file 
                        NULL);                  // No attribute template 
 
  if (hAppend == INVALID_HANDLE_VALUE) 
  { 
    wsprintf (szMsg, TEXT("Could not open TWO.TXT")); 
    CloseHandle (hFile);            // Close the first file. 



 49 

    return; 
  } 
 
  // Append the first file to the end of the second file. 
 
  do 
  { 
    if (ReadFile (hFile, buff, 4096, &dwBytesRead, NULL)) 
    { 
      dwPos = SetFilePointer (hAppend, 0, NULL, FILE_END); 
      WriteFile (hAppend, buff, dwBytesRead, 
                 &dwBytesWritten, NULL); 
    } 
  } 
  while (dwBytesRead == 4096); 
 
  // Close both files. 
 
  CloseHandle (hFile); 
  CloseHandle (hAppend); 
  return; 
} // end of AppendExample code 


